DaedTech

Stories about Software

By

How to Prioritize Bugs on Your To-Do List

Editorial Note: I originally wrote this post for the NDepend blog.  You can check out the original here, at their site.  While you’re there, take a look around at NDepend and explore its new tech debt measurement features.

People frequently ask me questions about code quality.  People also frequently ask me questions about efficiency and productivity.  But it seems we rarely wind up talking about the two together.  How can you most efficiently improve quality via the fixing of bugs.  Or, more specifically, how should you prioritize the list of bugs that you have?

Let me be clear about something up front.  I’m not going to offer you some kind of grand unified scheme of bug prioritization.  If I tried, the attempt would come off as utterly quixotic.  Because software shops, roles, and offerings vary so widely, I cannot address every possible situation.

Instead, I will offer a few different philosophies of prioritization, leaving the execution mechanics up to you.  These should cover most common scenarios that software developers and project managers will encounter.

Maximizing Self Interest

I’ll lead with the scenario probably most common to software developers.  Stop me if this sounds familiar.  The first interaction point you have with a bug is receiving an email from Jira or TFS or Rally or whatever.  From there, you log in, read the details, and check the pre-assigned priority.  You check that because of the bug-fixing algorithm imposed on you by management: fix any priority 1 bugs, or, if you have none of those, any priority 2 bugs, and so on down the line.

In this world, bug fixing becomes a matter of looking after your own self interest.  Prioritizing your own to do list, consequently, becomes simple.  Management and the business have made the important, strategic decisions already and will evaluate you on the basis of quantity of defects fixed.  Thus you should prioritize the easiest to fix first, so that you fix as many as possible.

This may sound cynical to you, but I’m fine with that.  I have a fundamental distaste for the specialization obsession we have that separates fixing and prioritization.  Organizations that freeze technical people out of the strategic discussion of priority reap what they sow.  Robbed of the ability to act in the organization’s best interests, developers should act in their own.  Of course, I would prefer developers participate in the “how do we act in the company’s best interests” discussions.

Read More

By

Have You Seen the NDepend API?

Editorial Note: I originally wrote this post for the NDepend blog.  You can check out the original here, at their site.  While you’re there, download NDepend and give it a try.

If you’re familiar with NDepend, you’re probably familiar with the Visual Studio plugin, the out of the box metrics, the excellent visualization tools, and the iconic Zone of Uselessness/Zone of Pain chart.  These feel familiar to NDepend users and have likely found their way into the normal application development process.

NDepend has other features as well, however, some of which I do not necessarily hear discussed as frequently.  The NDepend API has membership in that “lesser known NDepend features club.”  Yes, that’s right — if you didn’t know this, NDepend has an API that you can use.

You may be familiar, as a user, with the NDepend power tools.  These include some pretty powerful capabilities, such as duplicate code detection, so it stands to reason that you may have played with them or even that you might routinely use them.  But what you may not realize is the power tools’ source code accompanies the installation of NDepend, and it furnishes a great series of examples on how to use the NDepend API.

NDepend’s API is contained in the DLLs that support the executable and plugin, so you needn’t do anything special to obtain it.  The NDepend website also treats the API as a first class citizen, providing detailed, excellent documentation.   With your NDepend installation, you can get up and running quickly with the API.

Probably the easiest way to introduce yourself is to open the source code for the power tools project and to add a power tool, or generally to modify that assembly.  If you want to create your own assembly to use the power tools, you can do that as well, though it is a bit more involved.  The purpose of this post is not to do a walk-through of setting up with the power tools, however, since that can be found here.  I will mention two things, however, that are worth bearing in mind as you get started.

  1. If you want to use the API outside of the installed project directory, there is additional setup overhead.  Because it leverages proprietary parts of NDepend under the covers, setup is more involved than just adding a DLL by reference.
  2. Because of point (1), if you want to create your own assembly outside of the NDepend project structure, be sure to follow the setup instructions exactly.

Read More

By

Making Devs, Architects, and Managers Happy with the Static Analysis Tool

Editorial Note: I originally wrote this post for the NDepend blog.  You can check out the original here, at their site.  I use NDepend to drive my custom static analysis of .NET codebases — you should check it out.

Organizations come to possess static analysis tools in a variety of ways.  In some cases, management decides on some kind of quality initiative and buys the tool to make it so.  Or, perhaps some enterprising developers sold management on the tool and now, here it is.  Maybe it came out from the architecture group’s budget.

But however the tool arrives, it will surprise people.  In fact, it will probably surprise most people.  And surprises in the corporate context can easily go over like a lead balloon.  So the question becomes, “how do we make sure everyone feels happy with the new tool?”

A Question of Motivation

Before we can discuss what makes people happy, we need to look first at what motivates them.  Not all folks in the org will share motivation — these will generally vary by role.  The specific case of static analysis presents no exception to this general rule.

When it comes to static analysis, management has the simplest motivation.  Managers lack the development team’s insights into the codebase.  Instead, they perceive it only in terms of qualitative outcomes and lagging indicators.  Static analysis offers them a unique opportunity to see leading indicators and plan for issues around code quality.

Architects tend to view static analysis tools as empowering for them, once they get over any initial discomfort. Frequently, they define patterns and practices for teams, and static analysis makes these much easier to enforce.  Of course, the tool might also threaten the architects, should its guidance be at odds with their historical proclamations about developer practice.

For developers, complexity around motivation grows.  They may share the architects’ feelings of threat, should the tool disagree with historical practice.  But they may also feel empowered or vindicated, should it give them voice for a minority opinion.  The tool may also make them feel micromanaged if used to judge them, or empowered if it affords them the opportunity to learn.

Read More

By

Static Analysis for the Build Machine?

Editorial Note: I originally wrote this post for the NDepend blog.  You can check out the original here, at their site.  While you’re over there, download a trial of NDepend if you want to see some quantification of the tech debt in your codebase.

I remember my earliest experiences with static analysis.  Probably a decade ago, I started to read about it during grad school and to poke around with it at work.  Immediately, I knew I had discovered a powerful advantage for programmers.  These tools automated knowledge.

While I felt happy to share the knowledge with coworkers, their lack of interest didn’t disappoint me.  After all, it felt as though I had some sort of trade secret.  If those around me chose not to take advantage, I would shine by comparison.  (I have since, I’d like to think, matured a bit.)  Static analysis became my private competitive advantage — Sabermetrics for programmers.

So as you can imagine, running it on the build machine would not have occurred to me.  And that assumes a sophisticated enough setup that doing so made sense (not really the case back then).  Static analysis was my ace in the hole for writing good code — a personal choice and technique.

Fast forward a decade.  I have now grown up, worked with many more teams, and played many more roles.  And, of course, the technological landscape has changed.  All of that combined to cause a complete reversal of my opinion.  Static analysis and its advantages matter far too much not to use it on the build machine.  Today, I’d like to expand on that a bit.

What Does It Mean to Have Static Analysis on the Build Machine?

First point of expansion should be to mention what this means.  In the general sense, this means that the machine responsible for assembling your code into something deployable executes static analysis on said code.  Back when I first discovered static analysis, this would have meant pulling the code from source on that machine, running the analysis and building it.  These days, hopefully your build involves more automation than this.

To get a bit more detailed, a commit may trigger your build machine to kick off a build.  That could just mean compiling your code and packing it into a deployable format.  But shops commonly do other things, such as execute automated unit tests and check on code coverage.  And you can add static analysis to the mix.

You can certainly get creative with how you do this.  But two common (and not mutually exclusive) approaches include having the build generate a code health report and failing the build on egregious violations.

Read More

By

Alternatives to Lines of Code

Editorial Note: I originally wrote this post for the NDepend blog.  You can check out the original here, at their site.  While you’re there, download NDepend and give it a try — see if your code lies in the Zone of Pain.

It amazes me that, in 2016, I still hear the occasional story of some software team manager measuring developer productivity by committed lines of code (LOC) per day.  In fact, this reminds me of hearing about measles outbreaks.  That this still takes place shocks and creates an intense sense of anachronism.

I don’t have an original source, but Bill Gates is reputed to have offered pithy insight on this topic.  “Measuring programming progress by lines of code is like measuring aircraft building progress by weight.”  This cuts right to the point that “more and faster” does not equal “fit for purpose.”  You can write an awful lot of code without any of it proving useful.

Before heading too far down the management criticism rabbit hole, let’s pull back a bit.  Let’s take a look at why LOC represents such an attractive nuisance for management.

For many managers, years have passed since their days of slinging code (if those days ever existed in the first place).  So this puts them in the unenviable position of managing something relatively opaque to them.  And opacity runs afoul of the standard management playbook, wherein they take responsibility for evaluating performances, forecasting, and establishing metric-based incentives.

The Attraction of Lines of Code

Let’s consider a study in contrasts.  Imagine that you took a job managing a team of ditch diggers.  Each day you could stand there with your clipboard, evaluating visible progress and performance.  The diggers that moved the most dirt per hour would represent your superstars, and the ones that tired easily and took many breaks would represent the laggards.  You could forecast milestones by observing yards dug per day and then extrapolating that over the course of days, weeks, and months.  Your reports up to your superiors practically write themselves.

But now let’s change the game a bit.  Imagine that all ditches were dug purely underground and that you had to remain on the surface at all times.  Suddenly accounts of progress, metrics, and performance all come indirectly.  You need to rely on anecdotes from your team about one another to understand performance.  And you only know whether or not you’ve hit a milestone on the day that water either starts draining or stays where it is.

If you found yourself in this position suddenly, wouldn’t you cling to any semblance of measurability as if it were a life preserver?  Even if you knew it was reductionist, wouldn’t you cling?  Even if you knew it might mislead you?  Such is the plight of the dev manager.

In their world of opacity, lines of code represents something concrete and tangible.  It offers the promise of making their job substantially more approachable.  And so in order to take it away, we need to offer them something else instead.

Read More