DaedTech

Stories about Software

By

How to Use NDepend’s Trend Charts

Editorial note: I originally wrote this post for the NDepend blog.  You can check out the original here, at their site.  While you’re there, download NDepend and give the trend chart functionality a try.

Imagine a scene for a moment.  A year earlier, a corporate VP spun up a major software project for his organization.  He brought a slew of his organization’s software developers into the project.  But he also needed to add more staff in the form of contractors.

This strained the budget, so he cut a few corners in terms of team member experience.  The VP reasoned that he could make up for this with strategic use of experienced architects up front.  Those architects would prototype good patterns and make it so the less seasoned contractors could just kind of paint by numbers.  The architects spent a few months doing just that and handed the work off to the contractors.

Fast forward to the present.  Now a consultant sits in a nice office, explaining to a beleaguered VP how they got so far behind schedule.  I can picture this scene quite easily because organizations hire me to be this consultant.  I live this scene over and over again.

NDepend Trend Charts

Concepts like technical debt help quite a bit.  I also enlist various other metaphors to help them understand the issues that they face.  But nothing hits home like a visual.  I’ve described this before.  Generate an actual dependency map of their codebase and show it next to the ones the architects created in Visio, and you invariably see a disconnect.

Today, I’d like to take a look at another visual feature of NDepend: trend charts.  These allow you to see a graph-style representation of your codebase’s properties as a function of time.  And you can customize them a great deal.

NDepend trend charts help you visualize your code

In the scene I painted for you a moment ago, the VP—and the people in his program—feel pain for a specific reason.  They go far too long without reconciling the plan with reality.  I come along a year in and generate a diagram that they should have looked at all along.

Trend charts, by design, help combat that problem.  They allow you to get a feel for strategic properties of a codebase.  But they allow you to see how that property varies with time.  You can take advantage of that in some powerful ways.

Read More

By

In Defense of Using Your Users as Testers

Editorial note: I originally wrote this post for the NDepend blog.  You can check out the original here, at their site.  While you’re there, download a trial of NDepend and take it for a spin; you can try it for free.

In most shops of any size, you’ll find a person that’s just a little too cynical.  I’m a little cynical myself, and we programmers tend to skew that way.  But this guy takes it one step further, often disparaging the company in ways that you think must be career-limiting.  And they probably are, but that’s his problem.

Think hard, and some man or woman you’ve worked with will come to mind.  Picture the person.  Let’s call him Cynical Chad. Now, imagine Chad saying, “Testing? That’s what our users are for!”  You’ve definitely heard someone say this at least once in your career.

This is an oh-so-clever way to imply that the company serially skimps on quality.  Maybe they’re always running behind a too-ambitious schedule.  Or perhaps they don’t like to spend the money on testing.  I’m sure Chad would be happy to regale you with tales of project manager and QA incompetence.  He’ll probably tell you about your own incompetence too, if you get a couple of beers in him.

But behind Chad’s casual maligning of your company lies a real phenomenon.  With their backs against the wall, companies will toss things into production, hope for the best, and rely on users to find defects.  If this didn’t happen with some regularity in the industry, it wouldn’t be fodder for Chad’s predictable jokes and complaints.

The Height of Unprofessionalism

Let’s now forget Chad.  He’s probably off somewhere telling everyone how clueless the VPs are, anyway.

Most of the groups that you’ll work with as a software pro would recoil in horror at a deliberate strategy of using your users as testers.  They work for months or years implementing the initial release and then subsequent features.  The company spends millions on their salaries and on the software.  So to toss it to the users and say “you find our mistakes” marks the height of unprofessionalism.  It’s sloppy.

Your pride and your organization’s professional reputation call for something else.  You build the software carefully, testing as you go.  You put it through the paces, not just with unit and acceptance tests, but with a whole suite of smoke tests, load tests, stress tests and endurance tests.  QA does exploratory testing.  And then, with all of that complete, you test it all again.

Only after all of this do you release it to the wild, hoping that defects will be rare.  The users receive a polished product of which you can be proud — not a rough draft to help you sort through.

Users as Testers Reconsidered

But before we simply accept that as the right answer and move on, let’s revisit the nature of these groups.  As I mentioned, the company spends millions of dollars building this software.  This involves hiring a team of experienced and proud professionals, among other things.  Significant time, money, and company stake go into this effort.

If you earn a living as a salaried software developer, your career will involve moving from one group like this to another.   In each of these situations, anything short of shipping a polished product smacks of failure.  And in each of these situations, you’ll encounter a Chad, accusing the company of just such a failure.

But what about other situations?  Should enlisting users as testers always mean a failure of due diligence?  Well, no, I would argue.  Sometimes it’s a perfectly sound business or life decision.

Read More

By

How to Evaluate Your Static Analysis Process

Editorial note: I originally wrote this post for the NDepend blog.  You can check out the original here, at their site.  While you’re there, download a trial of NDepend and take a look at its static analysis capabilities.

I often get inquiries from clients and prospects about setting up and operationalizing static analysis.  This makes sense.  After all, we live in a world short on time and with software developers in great demand.  These clients always seem to have more to do than bandwidth allows.  And static analysis effectively automates subtle but important considerations in software development.

Specifically, it automates peer review to a certain extent.  The static analyzer acts as a non-judging, mute reviewer of sorts.  It also stands in for a tiny bit of QA’s job, calling attention to possible issues before they leave the team’s environment.  And, finally, it helps you out by acting as architect.  Team members can learn from the tool’s guidance.

So, as I’ve said, receiving setup inquiries doesn’t surprise me.  And I applaud these clients for pursuing this path of improvement.

What does surprise me, however, is how few organizations seem to ask another, related question.  They rarely ask for feedback about the efficacy of their currently implemented process.  Many organizations seem to consider static analysis implementation a checkbox kind of activity.  Have you done it?  Check.  Good.

So today, I’ll talk about checking in on an existing static analysis implementation.  How should you evaluate your static analysis process?

Read More

By

Fixing Your Snarled Dependency Graph

Editorial note: I originally wrote this post for the NDepend blog.  You can check out the original here, at their site.  While you’re there, have a look at NDepend’s features for helping you visualize your codebase.

I’ve written before about making use of NDepend’s dependency graph.  Well, indirectly, anyway.  In that post, I talked about the phenomenon of actual software architecture not matching the pretty diagrams people draw in Visio.  It reminds me of Helmuth von Moltke’s wisdom that no battle plan survives contact with the enemy.

Typically, architects conceive of wondrous, clean, and decoupled systems.  Then they immortalize this pristine architecture in Visio.  Naturally, print outs go up on the wall, and everyone knows what the system should look like.  But somehow, it never actually winds up looking like that.

Architectures of Despair

I think we all know what it winds up looking like.  Or, at least, what it can look like.  Sometimes the actual architecture only misses the mark by a little, around the edges.  But other times, it goes sailing off in the wrong direction, like a disastrous misfire at the archery range.

When this happens, we have metaphors for the result.  Work in the industry long enough, and you’ll hold your nose and describe a codebase as a big ball of mud.  You might also hear descriptors involving tangled Christmas tree lights or spaghetti code.  Maybe you’ll hear about a bramble bush or something.

The specific image varies, but the properties do not.  All of them describe something snarled, difficult to separate, and unpleasant to work with.  They indicate complexity without intent or purpose.  And when that happens, deadlines slip and defects proliferate.  Oh, and the people working in the codebase become miserable, now regarding those Visio diagrams as cruel jokes.

All of this stems from a core problem: a tangled dependency graph.

Read More

By

Why NDepend Uses Google’s Page Rank

Editorial note: I originally wrote this post for the NDepend blog.  You can check out the original here, at their site.  While you’re there, have a look at type rank and all of the other metrics that NDepend will show you about your code.

I remember my early days of blogging as sort of a comedy of errors.  Oh, don’t get me wrong.  I don’t think those early posts were terrible, since I’d always written a lot.  Rather, I knew very little about everything besides the writing.  For example, I initially thought link spammers were just somewhat daft blog commenters.  I stumbled through various mistakes and learned the art of blogging in fits and starts.  This included my discovery of something called page rank.

Page rank had a relatively involved calculation, but that didn’t interest me at the time.  Instead, I found myself dazzled by some gamification.  Sites like this one would take your domain and a captcha as input and spit out a score from 0 to 10 as output.  That simply, they turned my blogging world upside down.  I now had a score to chase and a means of comparing myself against others.  And I vaguely understood that getting more inbound links would increase my page rank score.

Of course, as an introvert, I struggle with outgoing self-promotion.  Cold outreach to people to see if they’d link to me never seriously occurred to me.  Instead, I reasoned that I would play the long game.  Write enough posts, and the shares start to come.  And then when the shares come, so too will the links.  So I watched my page rank inch slowly upward over time.

The Decline of Page Rank

My page rank ticked upward until one day it didn’t anymore.  Turns out, Google slowly killed it over the course of a number of years.  Ten months passed between its penultimate update and its final one.  So there I stood (metaphorically), waiting for a boost to my rank that would never come.

But why did Google kill page rank?  Wouldn’t such an easily digestible construct continue to help people?  Well, sort of.  Unfortunately, it disproportionately helped the wrong sort of people.

The Google founders developed the concept during their time at Stanford.  Conceptually, the page rank algorithm regards a link from site A to site B as a “vote” for site B, by site A.  But not all pages get to “vote” equally.  The higher a rank the page has, the more worthwhile its vote, creating a conceptual feedback loop.

On the surface, this sounds great, and, in many ways, it was.  As you can imagine, a site with a ton of inbound links, like a government study or a news outlet, would accumulate a great deal of rank.  Since employees would carefully curate such sites, you could put a lot of stock in a site to which they linked (and search engines did).  So in theory, you have a democratized system in which the sites best regarded by the public had the best rank.

But in this theory, no link spammers existed.  If you wanted good page rank, you could produce high quality, popular content.  Or you could pay some shady outfit to carpet bomb blog comment sections with links to your site.  Because of this fatal flaw, page rank eventually dwindled to obscurity.

A Useful Reappropriation of Page Rank

For clarity, understand that Google (probably) still uses some incarnation of this scheme.  But they no longer update the easily consumed public version of it.  They now use it as only one of many factors in what they display in response to searches.  The heyday of comparing page rank scores for sites has come and gone.  But that doesn’t mean we can’t use it elsewhere, and to great efficacy.

For instance, consider applying this to codebases.  Instead of a situation where website A links to website B, imagine a situation where type A refers directly to type B.  Now, imagine your codebase as a (hopefully acyclic) directed graph with edges and nodes.  You start to have an interesting vehicle for reasoning about your codebase.

What would a high rank mean in this context?  Well, relatively high rank for a type would mean that other types tended to refer to it at a high rate.  Types with relatively low (or zero) rank would take no dependencies, existing at the edge of your code.  And the types with the highest rank?  These would be types used by other types with high rank.

Read More